Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-641444x+934669145\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-641444xz^2+934669145z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-10263099x+59808562198\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3753949/400, 7213075017/8000)$ | $10.399702181032395604048873368$ | $\infty$ |
$(-4773/4, 4769/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 106722 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-360377472074754320802$ | = | $-1 \cdot 2 \cdot 3^{10} \cdot 7^{6} \cdot 11^{10} $ |
|
j-invariant: | $j$ | = | \( -\frac{192100033}{2371842} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-4} \cdot 11^{-4} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6262549544102258987950139701$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.094953900850670871486256809068$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0250656507343525$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.736076274612705$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.399702181032395604048873368$ |
|
Real period: | $\Omega$ | ≈ | $0.14435853056818725037384357140$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $12.010285801604869589812945852 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.010285802 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.144359 \cdot 10.399702 \cdot 32}{2^2} \\ & \approx 12.010285802\end{aligned}$$
Modular invariants
Modular form 106722.2.a.gk
For more coefficients, see the Downloads section to the right.
Modular degree: | 4423680 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$11$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.16 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1175 & 784 \\ 476 & 1287 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1841 & 8 \\ 1840 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1842 & 1843 \end{array}\right),\left(\begin{array}{rr} 232 & 371 \\ 1225 & 1254 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1847 \end{array}\right),\left(\begin{array}{rr} 960 & 833 \\ 721 & 1296 \end{array}\right),\left(\begin{array}{rr} 1231 & 784 \\ 700 & 1287 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$40874803200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 53361 = 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 11858 = 2 \cdot 7^{2} \cdot 11^{2} \) |
$7$ | additive | $26$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 106722.gk
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 66.b3, its twist by $-231$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{231}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-462}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{231})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.11942845778755584.524 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.11662935330816.19 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.11942845778755584.6 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | add | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | - | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | - | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.