Properties

Label 106560.cq
Number of curves $2$
Conductor $106560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 106560.cq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 106560.cq do not have complex multiplication.

Modular form 106560.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} + q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 106560.cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106560.cq1 106560bi1 \([0, 0, 0, -67008, -12756832]\) \(-2785840267264/4273846875\) \(-51046553548800000\) \([]\) \(829440\) \(1.8975\) \(\Gamma_0(N)\)-optimal
106560.cq2 106560bi2 \([0, 0, 0, 572352, 256669472]\) \(1736064508952576/3387451171875\) \(-40459500000000000000\) \([]\) \(2488320\) \(2.4468\)