Properties

Label 10647b
Number of curves $2$
Conductor $10647$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 10647b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 10647b do not have complex multiplication.

Modular form 10647.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + q^{7} + 3 q^{8} - q^{14} - q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 10647b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
10647.e1 10647b1 \([1, -1, 1, -7130, -181736]\) \(421875/91\) \(8645553420777\) \([2]\) \(16128\) \(1.1964\) \(\Gamma_0(N)\)-optimal
10647.e2 10647b2 \([1, -1, 1, 15685, -1121714]\) \(4492125/8281\) \(-786745361290707\) \([2]\) \(32256\) \(1.5430\)