Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3+3862833x+9388972323\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3+3862833xz^2+9388972323z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+61805328x+600894228688\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(7241/16, 6782107/64)$ | $2.0078756685170091790113807561$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 10647 \) | = | $3^{2} \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-41770917718305590742291$ | = | $-1 \cdot 3^{14} \cdot 7^{7} \cdot 13^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{1811564780171264}{11870974573731} \) | = | $2^{12} \cdot 3^{-8} \cdot 7^{-7} \cdot 13^{-3} \cdot 19^{3} \cdot 401^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0222915334609213836384274383$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1905107103960981699140610991$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0472072211574832$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.410927909912502$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.0078756685170091790113807561$ |
|
| Real period: | $\Omega$ | ≈ | $0.083034143837545653093010097936$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 56 $ = $ 2\cdot7\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.3364452757827706683192325392 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.336445276 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.083034 \cdot 2.007876 \cdot 56}{1^2} \\ & \approx 9.336445276\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 903168 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $7$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
| $13$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 182 = 2 \cdot 7 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 181 & 2 \\ 180 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 181 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 15 & 3 \end{array}\right),\left(\begin{array}{rr} 157 & 2 \\ 157 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[182])$ is a degree-$158505984$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/182\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | additive | $8$ | \( 1183 = 7 \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 63 = 3^{2} \cdot 7 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 10647.h consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 273.b1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.364.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.12057136.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.12147848616267.1 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | add | ord | split | ord | add | ss | ord | ord | ord | ord | ss | ord | ord | ord |
| $\lambda$-invariant(s) | 19,4 | - | 1 | 2 | 1 | - | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0,0 | - | 0 | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.