Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-250947947x-1530113279126\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-250947947xz^2-1530113279126z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-250947947x-1530113279126\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(53038377192496225/918457723044, 11695614712593536916232921/880214980371893928)$ | $36.693855239412821509613084186$ | $\infty$ |
| $(-9146, 0)$ | $0$ | $2$ |
Integral points
\( \left(-9146, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 10640 \) | = | $2^{4} \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $12045501440$ | = | $2^{10} \cdot 5 \cdot 7^{3} \cdot 19^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{1706768805632178182685889284}{11763185} \) | = | $2^{2} \cdot 3^{3} \cdot 5^{-1} \cdot 7^{-3} \cdot 19^{-3} \cdot 2593^{3} \cdot 96779^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9651433833487402590356487058$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3875207328821191678546219379$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0550363022789282$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.510035517621755$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $36.693855239412821509613084186$ |
|
| Real period: | $\Omega$ | ≈ | $0.037931816672172665223343197782$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot1\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.1755937698099487014174139338 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.175593770 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.037932 \cdot 36.693855 \cdot 12}{2^2} \\ & \approx 4.175593770\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 552960 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $19$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5320 = 2^{3} \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 4659 & 4658 \\ 3338 & 675 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5313 & 8 \\ 5312 & 9 \end{array}\right),\left(\begin{array}{rr} 1068 & 1 \\ 2151 & 6 \end{array}\right),\left(\begin{array}{rr} 1688 & 3 \\ 5045 & 2 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 5314 & 5315 \end{array}\right),\left(\begin{array}{rr} 3317 & 3324 \\ 3278 & 659 \end{array}\right),\left(\begin{array}{rr} 1524 & 1 \\ 783 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[5320])$ is a degree-$3812504371200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 665 = 5 \cdot 7 \cdot 19 \) |
| $3$ | good | $2$ | \( 80 = 2^{4} \cdot 5 \) |
| $5$ | split multiplicative | $6$ | \( 2128 = 2^{4} \cdot 7 \cdot 19 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 1520 = 2^{4} \cdot 5 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 10640.n
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 5320.f1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{665}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-19}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-35}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-19}, \sqrt{-35})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.15364160.3 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.2.5598720000.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ss | split | nonsplit | ord | ord | ord | split | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3,3 | 4 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
| $\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.