Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-140459873x+600291761901\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-140459873xz^2+600291761901z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-182035995435x+28007758551239334\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-6278, 1114297)$ | $1.4945541899818918131210823769$ | $\infty$ |
$(-54353/4, 54353/8)$ | $0$ | $2$ |
Integral points
\( \left(-6278, 1114297\right) \), \( \left(-6278, -1108019\right) \), \( \left(42970, 8575369\right) \), \( \left(42970, -8618339\right) \)
Invariants
Conductor: | $N$ | = | \( 106134 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $21674928024833074705498428$ | = | $2^{2} \cdot 3^{18} \cdot 7^{7} \cdot 19^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{55369510069623625}{3916046302812} \) | = | $2^{-2} \cdot 3^{-18} \cdot 5^{3} \cdot 7^{-1} \cdot 19^{-2} \cdot 31^{3} \cdot 2459^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6087955114426991972700381943$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1636209473318223147128481066$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9950582420479482$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.866938713988417$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4945541899818918131210823769$ |
|
Real period: | $\Omega$ | ≈ | $0.066612703189477480676901027734$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 576 $ = $ 2\cdot( 2 \cdot 3^{2} )\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $14.336106430730932422495581327 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.336106431 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.066613 \cdot 1.494554 \cdot 576}{2^2} \\ & \approx 14.336106431\end{aligned}$$
Modular invariants
Modular form 106134.2.a.cy
For more coefficients, see the Downloads section to the right.
Modular degree: | 39813120 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$3$ | $18$ | $I_{18}$ | split multiplicative | -1 | 1 | 18 | 18 |
$7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$19$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 19 & 36 \\ 3240 & 1351 \end{array}\right),\left(\begin{array}{rr} 10 & 27 \\ 1651 & 2782 \end{array}\right),\left(\begin{array}{rr} 533 & 36 \\ 542 & 361 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4753 & 36 \\ 4752 & 37 \end{array}\right),\left(\begin{array}{rr} 2732 & 4779 \\ 1289 & 4610 \end{array}\right),\left(\begin{array}{rr} 3503 & 4752 \\ 4002 & 4523 \end{array}\right)$.
The torsion field $K:=\Q(E[4788])$ is a degree-$107226685440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4788\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 17689 = 7^{2} \cdot 19^{2} \) |
$3$ | split multiplicative | $4$ | \( 35378 = 2 \cdot 7^{2} \cdot 19^{2} \) |
$7$ | additive | $32$ | \( 2166 = 2 \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 106134cq
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 798e2, its twist by $133$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{133}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.90972.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.17978023825776.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.6.41615795893.2 | \(\Z/18\Z\) | not in database |
$8$ | 8.0.6488309350656.18 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.35325239798016.21 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.405519334416.4 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.12.7093757820140894893871104.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ss | add | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 5 | 2 | 1,3 | - | 3 | 1 | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 1 | 0 | 0,0 | - | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.