Properties

Label 106134.z
Number of curves $4$
Conductor $106134$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 106134.z have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 106134.z do not have complex multiplication.

Modular form 106134.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + q^{12} - 4 q^{13} + q^{16} - 6 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 106134.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
106134.z1 106134bc3 \([1, 0, 1, -7571261, -8019199324]\) \(8671983378625/82308\) \(455566619472018852\) \([2]\) \(3732480\) \(2.5507\)  
106134.z2 106134bc4 \([1, 0, 1, -7394371, -8411682856]\) \(-8078253774625/846825858\) \(-4687097164437865958802\) \([2]\) \(7464960\) \(2.8973\)  
106134.z3 106134bc1 \([1, 0, 1, -141881, 1559324]\) \(57066625/32832\) \(181721864830943808\) \([2]\) \(1244160\) \(2.0014\) \(\Gamma_0(N)\)-optimal
106134.z4 106134bc2 \([1, 0, 1, 565679, 12597260]\) \(3616805375/2105352\) \(-11652914582284271688\) \([2]\) \(2488320\) \(2.3479\)