Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-6262274x-4814489868\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-6262274xz^2-4814489868z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8115907779x-224503100668098\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-235596/169, 77913198/2197)$ | $5.9049762872923875635849047013$ | $\infty$ |
| $(-876, 438)$ | $0$ | $2$ |
Integral points
\( \left(-876, 438\right) \)
Invariants
| Conductor: | $N$ | = | \( 106134 \) | = | $2 \cdot 3 \cdot 7^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $5714627674657004479488$ | = | $2^{10} \cdot 3 \cdot 7^{8} \cdot 19^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{4906933498657}{1032471552} \) | = | $2^{-10} \cdot 3^{-1} \cdot 7^{-2} \cdot 19^{-3} \cdot 16993^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8894990511778671254298627822$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.44432448706699024287267269454$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.948523185618163$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.060616031460536$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.9049762872923875635849047013$ |
|
| Real period: | $\Omega$ | ≈ | $0.096855245372662061861784524309$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot1\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.5754234178036417805863637041 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.575423418 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.096855 \cdot 5.904976 \cdot 32}{2^2} \\ & \approx 4.575423418\end{aligned}$$
Modular invariants
Modular form 106134.2.a.q
For more coefficients, see the Downloads section to the right.
| Modular degree: | 8294400 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $19$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1597 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 401 & 2794 \\ 2792 & 399 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1066 & 1 \\ 1063 & 0 \end{array}\right),\left(\begin{array}{rr} 3189 & 4 \\ 3188 & 5 \end{array}\right),\left(\begin{array}{rr} 2018 & 1 \\ 2183 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 913 & 4 \\ 1826 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[3192])$ is a degree-$1525001748480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3192\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 53067 = 3 \cdot 7^{2} \cdot 19^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 35378 = 2 \cdot 7^{2} \cdot 19^{2} \) |
| $5$ | good | $2$ | \( 53067 = 3 \cdot 7^{2} \cdot 19^{2} \) |
| $7$ | additive | $32$ | \( 2166 = 2 \cdot 3 \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 294 = 2 \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 106134.q
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 798.g1, its twist by $133$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.178752.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.103812949610496.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | ord | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 9 | 1 | 1 | - | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.