Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-88x+484\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-88xz^2+484z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7155x+331398\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(0, 22)$ | $0.56982244289691081121907698815$ | $\infty$ |
$(-11, 0)$ | $0$ | $2$ |
Integral points
\( \left(-11, 0\right) \), \((0,\pm 22)\), \((5,\pm 12)\), \((16,\pm 54)\)
Invariants
Conductor: | $N$ | = | \( 1056 \) | = | $2^{5} \cdot 3 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-45163008$ | = | $-1 \cdot 2^{9} \cdot 3^{6} \cdot 11^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{148877000}{88209} \) | = | $-1 \cdot 2^{3} \cdot 3^{-6} \cdot 5^{3} \cdot 11^{-2} \cdot 53^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.17125906209420359718275793882$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.34860132332575538488016615227$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1220261923101509$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.700236698662009$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.56982244289691081121907698815$ |
|
Real period: | $\Omega$ | ≈ | $1.8731699620485915352516915186$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.1347485674712842829797156692 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.134748567 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.873170 \cdot 0.569822 \cdot 8}{2^2} \\ & \approx 2.134748567\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 192 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | 1 | 5 | 9 | 0 |
$3$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 145 & 4 \\ 26 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 261 & 4 \\ 260 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 131 & 0 \end{array}\right),\left(\begin{array}{rr} 100 & 169 \\ 33 & 232 \end{array}\right),\left(\begin{array}{rr} 89 & 4 \\ 178 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$81100800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1 \) |
$3$ | nonsplit multiplicative | $4$ | \( 352 = 2^{5} \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 96 = 2^{5} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1056a
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.8.1-34848.5-a3 |
$4$ | 4.2.8712.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.18270388224.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.4857532416.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.2098454003712.22 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ss | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1,1 | 1 | 1 | 1 | 3 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.