Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-13201x+579215\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-13201xz^2+579215z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1069308x+425455632\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(59, 96)$ | $1.2419539798043894344643745499$ | $\infty$ |
$(65, 0)$ | $0$ | $2$ |
$(67, 0)$ | $0$ | $2$ |
Integral points
\( \left(-133, 0\right) \), \((17,\pm 600)\), \((59,\pm 96)\), \( \left(65, 0\right) \), \( \left(67, 0\right) \), \((131,\pm 1056)\)
Invariants
Conductor: | $N$ | = | \( 10560 \) | = | $2^{6} \cdot 3 \cdot 5 \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $100362240000$ | = | $2^{14} \cdot 3^{4} \cdot 5^{4} \cdot 11^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{15529488955216}{6125625} \) | = | $2^{4} \cdot 3^{-4} \cdot 5^{-4} \cdot 11^{-2} \cdot 9901^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0753881307761242269256837486$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.26671642012285469927224627357$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0278304524202422$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.325802914295714$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.2419539798043894344643745499$ |
|
Real period: | $\Omega$ | ≈ | $1.0452840960706043280674538401$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.1927789725644831722833361930 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.192778973 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.045284 \cdot 1.241954 \cdot 64}{4^2} \\ & \approx 5.192778973\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 16384 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}^{*}$ | additive | 1 | 6 | 14 | 0 |
$3$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$11$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.135 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 440 = 2^{3} \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 5 & 112 \\ 22 & 339 \end{array}\right),\left(\begin{array}{rr} 433 & 8 \\ 432 & 9 \end{array}\right),\left(\begin{array}{rr} 47 & 2 \\ 382 & 435 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 215 & 104 \\ 136 & 251 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 436 & 437 \end{array}\right),\left(\begin{array}{rr} 177 & 8 \\ 268 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[440])$ is a degree-$50688000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 3520 = 2^{6} \cdot 5 \cdot 11 \) |
$5$ | nonsplit multiplicative | $6$ | \( 2112 = 2^{6} \cdot 3 \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 960 = 2^{6} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 10560.bq
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 1320.f4, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.959512576.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.599695360000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.40960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.9404182757376.73 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.359634524805529600000000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | nonsplit | ss | split | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.