Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-4375x-113225\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-4375xz^2-113225z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-5670675x-5197568850\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 1050 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $-26250$ | = | $-1 \cdot 2 \cdot 3 \cdot 5^{4} \cdot 7 $ |
|
j-invariant: | $j$ | = | \( -\frac{14822892630025}{42} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 5^{2} \cdot 7^{-1} \cdot 31^{3} \cdot 271^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.50454827235435041720706304190$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.031931031790349707659856735842$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0264117643631667$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.284942915422039$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.29350271294898914259016702753$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.88050813884696742777050108259 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.880508139 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.293503 \cdot 1.000000 \cdot 3}{1^2} \\ & \approx 0.880508139\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 600 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
$7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.3 | 5.24.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 631 & 10 \\ 635 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 785 & 721 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 831 & 10 \\ 830 & 11 \end{array}\right),\left(\begin{array}{rr} 421 & 10 \\ 425 & 51 \end{array}\right),\left(\begin{array}{rr} 281 & 10 \\ 565 & 51 \end{array}\right),\left(\begin{array}{rr} 213 & 430 \\ 20 & 109 \end{array}\right),\left(\begin{array}{rr} 241 & 10 \\ 365 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
$3$ | nonsplit multiplicative | $4$ | \( 350 = 2 \cdot 5^{2} \cdot 7 \) |
$5$ | additive | $14$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 1050d
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.4200.1 | \(\Z/2\Z\) | not in database |
$4$ | \(\Q(\zeta_{5})\) | \(\Z/5\Z\) | not in database |
$6$ | 6.0.2963520000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.4253299470000.4 | \(\Z/3\Z\) | not in database |
$10$ | 10.2.472785742012500000000.4 | \(\Z/5\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/10\Z\) | not in database |
$20$ | 20.0.1117631789251551037750781250000000000000000.9 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 1 | 2 | - | 0 | 0 | 4 | 0 | 0,0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.