Properties

Label 104742j
Number of curves $1$
Conductor $104742$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 104742j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 104742j do not have complex multiplication.

Modular form 104742.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - 3 q^{7} - q^{8} - 2 q^{10} - q^{11} + q^{13} + 3 q^{14} + q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 104742j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
104742.u1 104742j1 \([1, -1, 0, -15161414121, 720121383516109]\) \(-3571480626044740843224673/9021299988885921792\) \(-973562123403214395454067761152\) \([]\) \(230630400\) \(4.6313\) \(\Gamma_0(N)\)-optimal