Properties

Label 104742.r
Number of curves $2$
Conductor $104742$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 104742.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 104742.r do not have complex multiplication.

Modular form 104742.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{7} - q^{8} - q^{11} + 2 q^{13} - 2 q^{14} + q^{16} - 8 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 104742.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
104742.r1 104742g2 \([1, -1, 0, -942777, -176605187]\) \(858729462625/371764272\) \(40120117333385242032\) \([2]\) \(3244032\) \(2.4578\)  
104742.r2 104742g1 \([1, -1, 0, 199863, -20520563]\) \(8181353375/6412032\) \(-691974715056590592\) \([2]\) \(1622016\) \(2.1112\) \(\Gamma_0(N)\)-optimal