Properties

Label 104742.e
Number of curves $2$
Conductor $104742$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 104742.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 104742.e do not have complex multiplication.

Modular form 104742.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{5} + q^{7} - q^{8} + 3 q^{10} - q^{11} - 7 q^{13} - q^{14} + q^{16} - 3 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 104742.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
104742.e1 104742o2 \([1, -1, 0, -22886226, -42132264372]\) \(12284337086925553/1165987944\) \(125831277091071895464\) \([]\) \(10948608\) \(2.8938\)  
104742.e2 104742o1 \([1, -1, 0, -604746, 95939316]\) \(226646274673/94431744\) \(10190900349015243264\) \([]\) \(3649536\) \(2.3445\) \(\Gamma_0(N)\)-optimal