Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2+xy+y=x^3-x^2-51586x-152945\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z+xyz+yz^2=x^3-x^2z-51586xz^2-152945z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-825371x-10613834\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-901/4, 897/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 104222 \) | = | $2 \cdot 31 \cdot 41^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $8773642037505122$ | = | $2 \cdot 31^{4} \cdot 41^{6} $ | 
     | 
        
| j-invariant: | $j$ | = | \( \frac{3196010817}{1847042} \) | = | $2^{-1} \cdot 3^{3} \cdot 31^{-4} \cdot 491^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7487083478331193748955622116$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.10807768551903452703781947492$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $1.1790775616093738$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8225321969756787$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.34631239977510640726542099797$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $2.7704991982008512581233679838 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 2.770499198 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.346312 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 2.770499198\end{aligned}$$
Modular invariants
Modular form 104222.2.a.b
For more coefficients, see the Downloads section to the right.
| Modular degree: | 552960 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
| $31$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $41$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.15 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10168 = 2^{3} \cdot 31 \cdot 41 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 4463 & 0 \\ 0 & 10167 \end{array}\right),\left(\begin{array}{rr} 1272 & 5371 \\ 3321 & 10046 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 10161 & 8 \\ 10160 & 9 \end{array}\right),\left(\begin{array}{rr} 2297 & 9184 \\ 8692 & 6233 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10162 & 10163 \end{array}\right),\left(\begin{array}{rr} 5987 & 6232 \\ 8610 & 5741 \end{array}\right)$.
The torsion field $K:=\Q(E[10168])$ is a degree-$78714961920000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 1681 = 41^{2} \) | 
| $31$ | nonsplit multiplicative | $32$ | \( 3362 = 2 \cdot 41^{2} \) | 
| $41$ | additive | $842$ | \( 62 = 2 \cdot 31 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 104222.b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a2, its twist by $41$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-41}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{-82}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{2}, \sqrt{-41})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.11852100665344.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.10689124861874176.34 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/8\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 31 | 41 | 
|---|---|---|---|
| Reduction type | split | nonsplit | add | 
| $\lambda$-invariant(s) | 10 | 0 | - | 
| $\mu$-invariant(s) | 1 | 0 | - | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.