Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-70155150843x-7152162991285642\)
|
(homogenize, simplify) |
\(y^2z=x^3-70155150843xz^2-7152162991285642z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-70155150843x-7152162991285642\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(778110034515695593875064099959415013427232000137238962509657768061614857785120016914614984077892225246/1468360922866155905422397782442924939832152691927260810060638011933424865464974120991498314975025, 575126477638664285522620162749003915613251723799777568569992244233363871415581115877945335959233981427349803071581141342330665327261690471041943330633706/1779300198969136480002338981767406951940370111870480708855699090457652679444005517880816728470284580152747168790328825443055767512264206047843625)$ | $232.03311692116850859205770429$ | $\infty$ |
$(-152966, 0)$ | $0$ | $2$ |
Integral points
\( \left(-152966, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 104040 \) | = | $2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $5560805265303721500000000000$ | = | $2^{11} \cdot 3^{13} \cdot 5^{12} \cdot 17^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{1059623036730633329075378}{154307373046875} \) | = | $2 \cdot 3^{-7} \cdot 5^{-12} \cdot 17^{-2} \cdot 179^{3} \cdot 251^{3} \cdot 1801^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.7322758234143859701420125106$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1309780915389398840204931385$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0554528133897931$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.49061225926671$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $232.03311692116850859205770429$ |
|
Real period: | $\Omega$ | ≈ | $0.0092765110830575763210040009484$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.6098311230224564819528644076 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.609831123 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.009277 \cdot 232.033117 \cdot 16}{2^2} \\ & \approx 8.609831123\end{aligned}$$
Modular invariants
Modular form 104040.2.a.bi
For more coefficients, see the Downloads section to the right.
Modular degree: | 247726080 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
$3$ | $4$ | $I_{7}^{*}$ | additive | -1 | 2 | 13 | 7 |
$5$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$17$ | $2$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 2034 & 2035 \end{array}\right),\left(\begin{array}{rr} 1036 & 119 \\ 17 & 594 \end{array}\right),\left(\begin{array}{rr} 817 & 1088 \\ 748 & 273 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 528 & 833 \\ 1513 & 120 \end{array}\right),\left(\begin{array}{rr} 256 & 323 \\ 289 & 1038 \end{array}\right),\left(\begin{array}{rr} 1799 & 0 \\ 0 & 2039 \end{array}\right),\left(\begin{array}{rr} 2033 & 8 \\ 2032 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[2040])$ is a degree-$57755566080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2040\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 2601 = 3^{2} \cdot 17^{2} \) |
$3$ | additive | $8$ | \( 2312 = 2^{3} \cdot 17^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 20808 = 2^{3} \cdot 3^{2} \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 104040.bi
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2040.h1, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-102}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{-17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.255377786535936.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.155870231040000.101 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | ss | ord | add | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 1,1 | 1 | - | 1 | 1 | 1 | 1,3 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.