Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-680124x+77918240\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-680124xz^2+77918240z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-680124x+77918240\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(38, 7220)$ | $2.5784875105701677098251609012$ | $\infty$ |
| $(-323, 16245)$ | $2.8881410734888687774569808781$ | $\infty$ |
| $(760, 0)$ | $0$ | $2$ |
Integral points
\((-698,\pm 14580)\), \((-323,\pm 16245)\), \((-212,\pm 14580)\), \((38,\pm 7220)\), \( \left(760, 0\right) \), \((910,\pm 14580)\), \((4510,\pm 297900)\)
Invariants
| Conductor: | $N$ | = | \( 103968 \) | = | $2^{5} \cdot 3^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $17511877908943220736$ | = | $2^{12} \cdot 3^{14} \cdot 19^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{247673152}{124659} \) | = | $2^{6} \cdot 3^{-8} \cdot 19^{-1} \cdot 157^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3851159951748755408061969216$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.32955681930234484431317153427$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9683473674013149$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.493111165776568$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.3237329387804486849034036765$ |
|
| Real period: | $\Omega$ | ≈ | $0.19351564309516788936074595008$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.338055116042898952904760706 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.338055116 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.193516 \cdot 7.323733 \cdot 32}{2^2} \\ & \approx 11.338055116\end{aligned}$$
Modular invariants
Modular form 103968.2.a.bz
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2211840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{3}^{*}$ | additive | -1 | 5 | 12 | 0 |
| $3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $19$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.11 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 456 = 2^{3} \cdot 3 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 450 & 451 \end{array}\right),\left(\begin{array}{rr} 68 & 303 \\ 201 & 146 \end{array}\right),\left(\begin{array}{rr} 151 & 0 \\ 0 & 455 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 331 & 174 \\ 138 & 211 \end{array}\right),\left(\begin{array}{rr} 56 & 429 \\ 285 & 284 \end{array}\right),\left(\begin{array}{rr} 449 & 8 \\ 448 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[456])$ is a degree-$189112320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/456\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 3249 = 3^{2} \cdot 19^{2} \) |
| $3$ | additive | $8$ | \( 11552 = 2^{5} \cdot 19^{2} \) |
| $19$ | additive | $200$ | \( 288 = 2^{5} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 103968.bz
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1824.a2, its twist by $-228$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{19}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{57}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.249739107434496.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.15983302875807744.4 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.11068769304576.32 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ord | ord | ord | ord | add | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 2 | 2 | 2 | 2 | 2 | - | 4 | 2 | 2,2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.