Properties

Label 103488.gt
Number of curves $1$
Conductor $103488$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 103488.gt1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 103488.gt do not have complex multiplication.

Modular form 103488.2.a.gt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - q^{11} + 4 q^{13} + q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 103488.gt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
103488.gt1 103488hm1 \([0, 1, 0, -17313, 2439135]\) \(-44681709625/175177728\) \(-2250167726112768\) \([]\) \(368640\) \(1.6313\) \(\Gamma_0(N)\)-optimal