Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-16158x-779688\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-16158xz^2-779688z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1308825x-572319000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-21021/289, 363636/4913)$ | $8.4152904508702984125157270094$ | $\infty$ |
| $(-68, 0)$ | $0$ | $2$ |
| $(147, 0)$ | $0$ | $2$ |
Integral points
\( \left(-78, 0\right) \), \( \left(-68, 0\right) \), \( \left(147, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 103200 \) | = | $2^{5} \cdot 3 \cdot 5^{2} \cdot 43$ |
|
| Discriminant: | $\Delta$ | = | $3744225000000$ | = | $2^{6} \cdot 3^{4} \cdot 5^{8} \cdot 43^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{466566337216}{3744225} \) | = | $2^{6} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{3} \cdot 43^{-2} \cdot 277^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2399811925774856736776439222$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.088688646080462831668648194858$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9196500388133513$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5241408442518223$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.4152904508702984125157270094$ |
|
| Real period: | $\Omega$ | ≈ | $0.42365330508426867920541577568$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.1303312255105749204466579502 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.130331226 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.423653 \cdot 8.415290 \cdot 32}{4^2} \\ & \approx 7.130331226\end{aligned}$$
Modular invariants
Modular form 103200.2.a.bh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 221184 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III$ | additive | -1 | 5 | 6 | 0 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $43$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1720 = 2^{3} \cdot 5 \cdot 43 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 427 & 1718 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 1717 & 4 \\ 1716 & 5 \end{array}\right),\left(\begin{array}{rr} 861 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1029 & 1718 \\ 1034 & 1 \end{array}\right),\left(\begin{array}{rr} 1121 & 2 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1720])$ is a degree-$51263815680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 34400 = 2^{5} \cdot 5^{2} \cdot 43 \) |
| $5$ | additive | $18$ | \( 4128 = 2^{5} \cdot 3 \cdot 43 \) |
| $43$ | split multiplicative | $44$ | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 103200.bh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 20640.h3, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{215}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{10}, \sqrt{-86})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.140034088960000.24 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | add | ord | ss | ord | ord | ord | ss | ord | ord | ord | ord | split | ss |
| $\lambda$-invariant(s) | - | 1 | - | 1 | 1,1 | 1 | 1 | 3 | 1,3 | 1 | 3 | 1 | 1 | 2 | 1,1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.