Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-876922578x-9995165544393\)
|
(homogenize, simplify) |
\(y^2z=x^3-876922578xz^2-9995165544393z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-876922578x-9995165544393\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(469831369296105045187840643361233073171970664027906648345137671787984006232210367880751609227094352881363852719/320891091788994761935510668630549130095985385933796997383210259464740569598123649642331141720292261695561, 10181774578961483377612547359022975736947623625757591554150790235551053116570467838254568329191207012911990506647144459365375707032539904239881223083479850884807259952/5748261162120172000870444129581710836204541267829259707829114190795134028368774241209482160379866818169932795038747194851834167734025807456738267627961119941)$ | $254.84317335103089947045527531$ | $\infty$ |
$(-17097, 0)$ | $0$ | $2$ |
Integral points
\( \left(-17097, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 102960 \) | = | $2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $5185812141441360$ | = | $2^{4} \cdot 3^{9} \cdot 5 \cdot 11^{7} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{236807903430715307255728128}{16466659495} \) | = | $2^{11} \cdot 3^{3} \cdot 5^{-1} \cdot 7^{3} \cdot 11^{-7} \cdot 13^{-2} \cdot 2319901^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3886266489428358981900335828$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.3336183722551051931711889480$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.054823772190886$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.3584111441673326$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $254.84317335103089947045527531$ |
|
Real period: | $\Omega$ | ≈ | $0.027743371775913039035976662958$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.0702089028311045888431501875 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.070208903 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.027743 \cdot 254.843173 \cdot 4}{2^2} \\ & \approx 7.070208903\end{aligned}$$
Modular invariants
Modular form 102960.2.a.cg
For more coefficients, see the Downloads section to the right.
Modular degree: | 19353600 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | 1 | 4 | 4 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8580 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 6437 & 2146 \\ 2144 & 6435 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 2641 & 4 \\ 5282 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7022 & 1 \\ 779 & 0 \end{array}\right),\left(\begin{array}{rr} 2864 & 1 \\ 5719 & 0 \end{array}\right),\left(\begin{array}{rr} 3434 & 1 \\ 6863 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 8577 & 4 \\ 8576 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[8580])$ is a degree-$63764692992000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8580\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 165 = 3 \cdot 5 \cdot 11 \) |
$3$ | additive | $2$ | \( 11440 = 2^{4} \cdot 5 \cdot 11 \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 20592 = 2^{4} \cdot 3^{2} \cdot 11 \cdot 13 \) |
$7$ | good | $2$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 102960f
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 51480e1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{165}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.4015440.6 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.48774369140640000.47 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | ord | nonsplit | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.