Properties

Label 102960du
Number of curves $2$
Conductor $102960$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("du1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 102960du have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 102960du do not have complex multiplication.

Modular form 102960.2.a.du

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{11} + q^{13} + 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 102960du

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
102960.bn2 102960du1 \([0, 0, 0, -96123, 15403178]\) \(-32894113444921/15289560000\) \(-45654381527040000\) \([2]\) \(737280\) \(1.9029\) \(\Gamma_0(N)\)-optimal
102960.bn1 102960du2 \([0, 0, 0, -1680123, 838132778]\) \(175654575624148921/21954418200\) \(65555541474508800\) \([2]\) \(1474560\) \(2.2494\)