Properties

Label 102960.df
Number of curves $1$
Conductor $102960$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 102960.df1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 102960.df do not have complex multiplication.

Modular form 102960.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - q^{7} - q^{11} - q^{13} - 4 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 102960.df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
102960.df1 102960dz1 \([0, 0, 0, 1436613, -552035734]\) \(109813469243970311/107638502400000\) \(-321406845950361600000\) \([]\) \(2995200\) \(2.6219\) \(\Gamma_0(N)\)-optimal