Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-3649x+84289\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-3649xz^2+84289z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-295596x+60559920\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(49, 144)$ | $0.75062342035186073920733284074$ | $\infty$ |
| $(40, 27)$ | $2.3354251695709717628395032800$ | $\infty$ |
| $(31, 0)$ | $0$ | $2$ |
Integral points
\((-61,\pm 276)\), \((-15,\pm 368)\), \( \left(31, 0\right) \), \((40,\pm 27)\), \((47,\pm 120)\), \((49,\pm 144)\), \((81,\pm 560)\), \((273,\pm 4400)\), \((355,\pm 6588)\), \((17329,\pm 2281104)\)
Invariants
| Conductor: | $N$ | = | \( 101568 \) | = | $2^{6} \cdot 3 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $129174994944$ | = | $2^{17} \cdot 3^{4} \cdot 23^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{3370318}{81} \) | = | $2 \cdot 3^{-4} \cdot 7^{3} \cdot 17^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.91670122213907149626121351472$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.84913083763647178144822019863$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9379347191108709$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1418270601197062$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.6553311301358811741534589295$ |
|
| Real period: | $\Omega$ | ≈ | $1.0395401111529371258669967703$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.8831324280654837850537851851 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.883132428 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.039540 \cdot 1.655331 \cdot 16}{2^2} \\ & \approx 6.883132428\end{aligned}$$
Modular invariants
Modular form 101568.2.a.e
For more coefficients, see the Downloads section to the right.
| Modular degree: | 147456 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{7}^{*}$ | additive | 1 | 6 | 17 | 0 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $23$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 184 = 2^{3} \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 2 & 1 \\ 91 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 20 & 1 \\ 87 & 0 \end{array}\right),\left(\begin{array}{rr} 181 & 4 \\ 180 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 116 & 73 \\ 161 & 24 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[184])$ is a degree-$34197504$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 23 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 33856 = 2^{6} \cdot 23^{2} \) |
| $23$ | additive | $156$ | \( 192 = 2^{6} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 101568.e
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 12696.r1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{46}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.97336.1 | \(\Z/4\Z\) | not in database |
| $8$ | 8.4.2483630085505024.14 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.606355001344.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | ord | ord | ord | ord | ss | ord | add | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 2 | 2 | 2 | 2 | 2,2 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.