Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+354577492x+6769363711488\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+354577492xz^2+6769363711488z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+28720776825x+4934779983344250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(63772, 16992288)$ | $8.6985837876284619955636849354$ | $\infty$ |
$(-12957, 0)$ | $0$ | $2$ |
Integral points
\( \left(-12957, 0\right) \), \((63772,\pm 16992288)\)
Invariants
Conductor: | $N$ | = | \( 101400 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $-22648476688233398437500000000$ | = | $-1 \cdot 2^{8} \cdot 3^{7} \cdot 5^{18} \cdot 13^{9} $ |
|
j-invariant: | $j$ | = | \( \frac{116227003261808}{533935546875} \) | = | $2^{4} \cdot 3^{-7} \cdot 5^{-12} \cdot 107^{3} \cdot 181^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.1232237325313071928790111703$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.93269463784480758059369450821$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.044679748772945$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.299214728439689$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $8.6985837876284619955636849354$ |
|
Real period: | $\Omega$ | ≈ | $0.027296970979208471116232961752$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 112 $ = $ 2\cdot7\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.6484596979110080343764571580 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.648459698 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.027297 \cdot 8.698584 \cdot 112}{2^2} \\ & \approx 6.648459698\end{aligned}$$
Modular invariants
Modular form 101400.2.a.ce
For more coefficients, see the Downloads section to the right.
Modular degree: | 70447104 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{1}^{*}$ | additive | 1 | 3 | 8 | 0 |
$3$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$5$ | $4$ | $I_{12}^{*}$ | additive | 1 | 2 | 18 | 12 |
$13$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 156 = 2^{2} \cdot 3 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 106 & 1 \\ 103 & 0 \end{array}\right),\left(\begin{array}{rr} 112 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 153 & 4 \\ 152 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41 & 118 \\ 116 & 39 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[156])$ is a degree-$10063872$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/156\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
$3$ | split multiplicative | $4$ | \( 33800 = 2^{3} \cdot 5^{2} \cdot 13^{2} \) |
$5$ | additive | $18$ | \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \) |
$7$ | good | $2$ | \( 33800 = 2^{3} \cdot 5^{2} \cdot 13^{2} \) |
$13$ | additive | $62$ | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 101400bq
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 20280f2, its twist by $65$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.2.2636400.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.62555444640000.74 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.35187437610000.15 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | add | ord | ord | add | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | - | 1 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.