Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-300747x-61644422\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-300747xz^2-61644422z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-300747x-61644422\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 101232 \) | = | $2^{4} \cdot 3^{2} \cdot 19 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $99325310071209984$ | = | $2^{29} \cdot 3^{6} \cdot 19^{3} \cdot 37 $ |
|
| j-invariant: | $j$ | = | \( \frac{1007488615738249}{33263845376} \) | = | $2^{-17} \cdot 17^{3} \cdot 19^{-3} \cdot 37^{-1} \cdot 5897^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0345925512161412816219253334$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.79213922632214112650707059348$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9310079560584413$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.2911016659744305$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.20428107362666854254617504410$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot2\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.81712429450667417018470017640 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.817124295 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.204281 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.817124295\end{aligned}$$
Modular invariants
Modular form 101232.2.a.v
For more coefficients, see the Downloads section to the right.
| Modular degree: | 705024 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{21}^{*}$ | additive | -1 | 4 | 29 | 17 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $19$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $37$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5624 = 2^{3} \cdot 19 \cdot 37 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1407 & 2 \\ 1407 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 2073 & 2 \\ 2073 & 3 \end{array}\right),\left(\begin{array}{rr} 2813 & 2 \\ 2813 & 3 \end{array}\right),\left(\begin{array}{rr} 4257 & 2 \\ 4257 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 5623 & 0 \end{array}\right),\left(\begin{array}{rr} 5623 & 2 \\ 5622 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[5624])$ is a degree-$172297965404160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5624\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 6327 = 3^{2} \cdot 19 \cdot 37 \) |
| $3$ | additive | $6$ | \( 592 = 2^{4} \cdot 37 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \) |
| $37$ | split multiplicative | $38$ | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 101232.v consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1406.c1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.3.5624.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.177883610624.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.4197161069568.7 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ss | ord | ord | ss | nonsplit | ord | ss | ord | split | ss | ord | ord |
| $\lambda$-invariant(s) | - | - | 2 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 1 | 0,0 | 0 | 0 |
| $\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.