Properties

Label 101232.bb
Number of curves $1$
Conductor $101232$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 101232.bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1 + T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 101232.bb do not have complex multiplication.

Modular form 101232.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{7} - 5 q^{13} + 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 101232.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
101232.bb1 101232t1 \([0, 0, 0, -2739, -161422]\) \(-761048497/3329408\) \(-9941559017472\) \([]\) \(161280\) \(1.1789\) \(\Gamma_0(N)\)-optimal