Properties

Label 100800mo
Number of curves $1$
Conductor $100800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 100800mo1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800mo do not have complex multiplication.

Modular form 100800.2.a.mo

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 5 q^{11} - 8 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 100800mo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.l1 100800mo1 \([0, 0, 0, -7500, 425000]\) \(-6400/7\) \(-51030000000000\) \([]\) \(276480\) \(1.3250\) \(\Gamma_0(N)\)-optimal