Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-25192200x-48659389000\)
|
(homogenize, simplify) |
\(y^2z=x^3-25192200xz^2-48659389000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-25192200x-48659389000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3646336364446/479040769, 4695938837232517656/10484765311103)$ | $27.455567669904940333984631205$ | $\infty$ |
$(-2930, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2930, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 100800 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7$ |
|
Discriminant: | $\Delta$ | = | $379758881250000000000$ | = | $2^{10} \cdot 3^{11} \cdot 5^{14} \cdot 7^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{151591373397612544}{32558203125} \) | = | $2^{11} \cdot 3^{-5} \cdot 5^{-8} \cdot 7^{-3} \cdot 11^{6} \cdot 347^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9436880215825947966442246044$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0120402705648686724651955514$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1312171453358946$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.4457353712974825$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $27.455567669904940333984631205$ |
|
Real period: | $\Omega$ | ≈ | $0.067388940461937072775681146478$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.4008064602236335628039485471 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.400806460 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.067389 \cdot 27.455568 \cdot 16}{2^2} \\ & \approx 7.400806460\end{aligned}$$
Modular invariants
Modular form 100800.2.a.ep
For more coefficients, see the Downloads section to the right.
Modular degree: | 5898240 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 |
$3$ | $2$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
$5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
$7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 559 & 60 \\ 730 & 649 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 269 & 270 \\ 470 & 389 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 104 & 165 \\ 275 & 334 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 796 & 505 \\ 335 & 6 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \) |
$3$ | additive | $8$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
$5$ | additive | $18$ | \( 4032 = 2^{6} \cdot 3^{2} \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 14400 = 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 100800lc
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 840d1, its twist by $120$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-210}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-10}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.3512980316160000.66 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1463132160000.55 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.1561324584960000.33 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.181398528000000.38 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | nonsplit | ss | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.