Properties

Label 100800lc
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("lc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800lc have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800lc do not have complex multiplication.

Modular form 100800.2.a.lc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} + 6 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 100800lc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.ep3 100800lc1 \([0, 0, 0, -25192200, -48659389000]\) \(151591373397612544/32558203125\) \(379758881250000000000\) \([2]\) \(5898240\) \(2.9437\) \(\Gamma_0(N)\)-optimal
100800.ep2 100800lc2 \([0, 0, 0, -28004700, -37122514000]\) \(13015144447800784/4341909875625\) \(810304588628640000000000\) \([2, 2]\) \(11796480\) \(3.2903\)  
100800.ep4 100800lc3 \([0, 0, 0, 81345300, -256041214000]\) \(79743193254623804/84085819746075\) \(-62769728097166003200000000\) \([2]\) \(23592960\) \(3.6368\)  
100800.ep1 100800lc4 \([0, 0, 0, -182354700, 920156186000]\) \(898353183174324196/29899176238575\) \(22319615465391283200000000\) \([2]\) \(23592960\) \(3.6368\)