Properties

Label 100800.u
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800.u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800.u do not have complex multiplication.

Modular form 100800.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 4 q^{11} - 2 q^{13} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 100800.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.u1 100800md4 \([0, 0, 0, -1562700, 707866000]\) \(282678688658/18600435\) \(27770300651520000000\) \([2]\) \(2359296\) \(2.4805\)  
100800.u2 100800md2 \([0, 0, 0, -302700, -50654000]\) \(4108974916/893025\) \(666639590400000000\) \([2, 2]\) \(1179648\) \(2.1339\)  
100800.u3 100800md1 \([0, 0, 0, -284700, -58466000]\) \(13674725584/945\) \(176359680000000\) \([2]\) \(589824\) \(1.7874\) \(\Gamma_0(N)\)-optimal
100800.u4 100800md3 \([0, 0, 0, 669300, -309206000]\) \(22208984782/40516875\) \(-60491370240000000000\) \([2]\) \(2359296\) \(2.4805\)