Properties

Label 100800.p
Number of curves $4$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800.p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800.p do not have complex multiplication.

Modular form 100800.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 4 q^{11} - 6 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 100800.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.p1 100800mg4 \([0, 0, 0, -3854700, -2912814000]\) \(2121328796049/120050\) \(358467379200000000\) \([2]\) \(2359296\) \(2.4327\)  
100800.p2 100800mg3 \([0, 0, 0, -1262700, 510354000]\) \(74565301329/5468750\) \(16329600000000000000\) \([2]\) \(2359296\) \(2.4327\)  
100800.p3 100800mg2 \([0, 0, 0, -254700, -40014000]\) \(611960049/122500\) \(365783040000000000\) \([2, 2]\) \(1179648\) \(2.0862\)  
100800.p4 100800mg1 \([0, 0, 0, 33300, -3726000]\) \(1367631/2800\) \(-8360755200000000\) \([2]\) \(589824\) \(1.7396\) \(\Gamma_0(N)\)-optimal