Properties

Label 100800.ej
Number of curves $2$
Conductor $100800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ej1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800.ej have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800.ej do not have complex multiplication.

Modular form 100800.2.a.ej

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} + 4 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 100800.ej

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.ej1 100800ke2 \([0, 0, 0, -4140, -74800]\) \(8869743/2401\) \(2124251136000\) \([2]\) \(131072\) \(1.0734\)  
100800.ej2 100800ke1 \([0, 0, 0, 660, -7600]\) \(35937/49\) \(-43352064000\) \([2]\) \(65536\) \(0.72678\) \(\Gamma_0(N)\)-optimal