Properties

Label 100800.d
Number of curves $2$
Conductor $100800$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100800.d have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100800.d do not have complex multiplication.

Modular form 100800.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 6 q^{11} + q^{13} - 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 100800.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100800.d1 100800pd2 \([0, 0, 0, -201900, -36945200]\) \(-7620530425/526848\) \(-62926387937280000\) \([]\) \(995328\) \(1.9743\)  
100800.d2 100800pd1 \([0, 0, 0, 14100, -52400]\) \(2595575/1512\) \(-180592312320000\) \([]\) \(331776\) \(1.4250\) \(\Gamma_0(N)\)-optimal