Properties

Label 100672o
Number of curves $2$
Conductor $100672$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 100672o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100672o do not have complex multiplication.

Modular form 100672.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 2 q^{7} - 2 q^{9} - q^{13} + 3 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 100672o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100672.bi2 100672o1 \([0, -1, 0, -4033, 49601]\) \(1890625/832\) \(3193257852928\) \([]\) \(129024\) \(1.0952\) \(\Gamma_0(N)\)-optimal
100672.bi1 100672o2 \([0, -1, 0, -158913, -24328511]\) \(115636266625/8788\) \(33728786071552\) \([]\) \(387072\) \(1.6445\)