Properties

Label 100188c
Number of curves $1$
Conductor $100188$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 100188c1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 100188c do not have complex multiplication.

Modular form 100188.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 100188c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
100188.k1 100188c1 \([0, 0, 0, -6400053, 6231942981]\) \(-51964534050048/253\) \(-141152283139824\) \([]\) \(1105920\) \(2.3368\) \(\Gamma_0(N)\)-optimal