Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+825x+28798\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+825xz^2+28798z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+825x+28798\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(47, 414)$ | $0.46052423446255797059784390987$ | $\infty$ |
| $(27, 266)$ | $3.1804423366120048688561903698$ | $\infty$ |
| $(-22, 0)$ | $0$ | $2$ |
Integral points
\( \left(-22, 0\right) \), \((-13,\pm 126)\), \((11,\pm 198)\), \((27,\pm 266)\), \((47,\pm 414)\), \((231,\pm 3542)\), \((803,\pm 22770)\), \((1082,\pm 35604)\)
Invariants
| Conductor: | $N$ | = | \( 100188 \) | = | $2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-394205315328$ | = | $-1 \cdot 2^{8} \cdot 3^{7} \cdot 11^{3} \cdot 23^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{250000}{1587} \) | = | $2^{4} \cdot 3^{-1} \cdot 5^{6} \cdot 23^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.90681561390950304238259977458$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.70406246899744131227533015268$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8788089895588066$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.9578678771743006$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4198343185122357587324194708$ |
|
| Real period: | $\Omega$ | ≈ | $0.68797997391627878266473130017$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 3\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.721810928985825020972370489 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.721810929 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.687980 \cdot 1.419834 \cdot 48}{2^2} \\ & \approx 11.721810929\end{aligned}$$
Modular invariants
Modular form 100188.2.a.o
For more coefficients, see the Downloads section to the right.
| Modular degree: | 73728 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
| $23$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3036 = 2^{2} \cdot 3 \cdot 11 \cdot 23 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 3033 & 4 \\ 3032 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 760 & 2281 \\ 2277 & 760 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2026 & 1 \\ 2023 & 0 \end{array}\right),\left(\begin{array}{rr} 1108 & 1 \\ 2759 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 925 & 4 \\ 1850 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[3036])$ is a degree-$1354221158400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3036\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 99 = 3^{2} \cdot 11 \) |
| $3$ | additive | $8$ | \( 11132 = 2^{2} \cdot 11^{2} \cdot 23 \) |
| $11$ | additive | $42$ | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 100188.o
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 33396.o2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.33796752.2 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | ss | add | ord | ord | ord | split | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 4,2 | 4,2 | - | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0,0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.