Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-39611x-3034390\)
|
(homogenize, simplify) |
\(y^2z=x^3-39611xz^2-3034390z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-39611x-3034390\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2101/9, 17920/27)$ | $5.9709954319223565430875439248$ | $\infty$ |
$(-115, 0)$ | $0$ | $2$ |
Integral points
\( \left(-115, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 100016 \) | = | $2^{4} \cdot 7 \cdot 19 \cdot 47$ |
|
Discriminant: | $\Delta$ | = | $7783645184$ | = | $2^{16} \cdot 7 \cdot 19^{2} \cdot 47 $ |
|
j-invariant: | $j$ | = | \( \frac{1678074290715537}{1900304} \) | = | $2^{-4} \cdot 3^{3} \cdot 7^{-1} \cdot 11^{3} \cdot 13^{3} \cdot 19^{-2} \cdot 47^{-1} \cdot 277^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1829583960427982388289400455$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48981121548285292941170792404$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8984227962309551$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.767381873630078$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.9709954319223565430875439248$ |
|
Real period: | $\Omega$ | ≈ | $0.33841190489349197912045574259$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.0413118764543671674012411781 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.041311876 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.338412 \cdot 5.970995 \cdot 8}{2^2} \\ & \approx 4.041311876\end{aligned}$$
Modular invariants
Modular form 100016.2.a.h
For more coefficients, see the Downloads section to the right.
Modular degree: | 113664 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$47$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.60 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2632 = 2^{3} \cdot 7 \cdot 47 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2625 & 8 \\ 2624 & 9 \end{array}\right),\left(\begin{array}{rr} 2264 & 3 \\ 757 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 983 & 984 \\ 2290 & 977 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 792 & 3 \\ 2469 & 2 \end{array}\right),\left(\begin{array}{rr} 995 & 990 \\ 1650 & 331 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2626 & 2627 \end{array}\right)$.
The torsion field $K:=\Q(E[2632])$ is a degree-$307960676352$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2632\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 329 = 7 \cdot 47 \) |
$7$ | split multiplicative | $8$ | \( 14288 = 2^{4} \cdot 19 \cdot 47 \) |
$19$ | split multiplicative | $20$ | \( 5264 = 2^{4} \cdot 7 \cdot 47 \) |
$47$ | split multiplicative | $48$ | \( 2128 = 2^{4} \cdot 7 \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 100016p
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 12502c1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{329}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-329}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
$4$ | 4.2.51422701316.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{329})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | split | ss | ord | ord | split | ss | ord | ss | ord | ord | ord | split |
$\lambda$-invariant(s) | - | 1,1 | 1 | 2 | 1,1 | 1 | 1 | 2 | 3,1 | 1 | 1,1 | 1 | 1 | 1 | 2 |
$\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.