Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
25.3-a2
25.3-a
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
25.3
\( 5^{2} \)
\( 5^{4} \)
$1.98642$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2Cs
$1$
\( 2^{2} \)
$1$
$52.25768563$
1.004955493
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
\( \bigl[a\) , \( a^{2} - a - 4\) , \( a\) , \( -7 a^{2} + 2 a + 5\) , \( -12 a^{2} - 10 a - 3\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(-7a^{2}+2a+5\right){x}-12a^{2}-10a-3$
125.3-d3
125.3-d
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
125.3
\( 5^{3} \)
\( 5^{10} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$30.06441151$
1.156323519
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
\( \bigl[a^{2} - a - 2\) , \( 0\) , \( 1\) , \( -11 a^{2} + 6 a + 1\) , \( 52 a + 12\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+{y}={x}^{3}+\left(-11a^{2}+6a+1\right){x}+52a+12$
125.6-a2
125.6-a
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
125.6
\( 5^{3} \)
\( 5^{10} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{3} \)
$1$
$41.50034334$
1.596167051
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
\( \bigl[a^{2} - a - 3\) , \( a - 1\) , \( a + 1\) , \( -20 a^{2} - 65 a - 50\) , \( -221 a^{2} - 440 a - 187\bigr] \)
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-20a^{2}-65a-50\right){x}-221a^{2}-440a-187$
625.2-i3
625.2-i
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
625.2
\( 5^{4} \)
\( 5^{16} \)
$3.39674$
$(-a^2+2a+3), (-a+1)$
$1$
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{4} \)
$0.157322213$
$69.80113317$
2.534138954
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
\( \bigl[a + 1\) , \( -1\) , \( a^{2} - a - 3\) , \( -48 a^{2} + 59 a + 17\) , \( 236 a^{2} - 331 a - 106\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}-{x}^{2}+\left(-48a^{2}+59a+17\right){x}+236a^{2}-331a-106$
625.5-e3
625.5-e
$4$
$4$
3.3.169.1
$3$
$[3, 0]$
625.5
\( 5^{4} \)
\( 5^{10} \)
$3.39674$
$(-a^2+2a+3), (-a^2+a+2), (-a+1)$
$1$
$\Z/2\Z\oplus\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2Cs
$1$
\( 2^{4} \)
$0.072773617$
$156.0800786$
2.621195068
\( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
\( \bigl[a^{2} - a - 2\) , \( a^{2} - 2\) , \( a^{2} - a - 2\) , \( -180 a^{2} + 433 a + 127\) , \( 1977 a^{2} - 4699 a - 1431\bigr] \)
${y}^2+\left(a^{2}-a-2\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2\right){x}^{2}+\left(-180a^{2}+433a+127\right){x}+1977a^{2}-4699a-1431$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.