Properties

Label 3.3.169.1-625.2-i3
Base field 3.3.169.1
Conductor norm \( 625 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 3.3.169.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 4 x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -4, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, -4, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-3\right){y}={x}^{3}-{x}^{2}+\left(-48a^{2}+59a+17\right){x}+236a^{2}-331a-106\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1,0]),K([-1,0,0]),K([-3,-1,1]),K([17,59,-48]),K([-106,-331,236])])
 
Copy content gp:E = ellinit([Polrev([1,1,0]),Polrev([-1,0,0]),Polrev([-3,-1,1]),Polrev([17,59,-48]),Polrev([-106,-331,236])], K);
 
Copy content magma:E := EllipticCurve([K![1,1,0],K![-1,0,0],K![-3,-1,1],K![17,59,-48],K![-106,-331,236]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(2 a^{2} - 3 a + 1 : -6 a : 1\right)$$0.15732221389775571213925769454806618432$$\infty$
$\left(\frac{7}{4} a^{2} - \frac{5}{2} a + \frac{3}{4} : -a^{2} - \frac{17}{8} a + \frac{1}{4} : 1\right)$$0$$2$
$\left(a^{2} - 7 a - 4 : 2 a^{2} + 4 a + 3 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-2a^2+8a+9)\) = \((-a^2+2a+3)^{2}\cdot(-a+1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 625 \) = \(5^{2}\cdot5^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $1081a^2-2099a+3073$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((1081a^2-2099a+3073)\) = \((-a^2+2a+3)^{8}\cdot(-a+1)^{8}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 152587890625 \) = \(5^{8}\cdot5^{8}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{217317341}{5} a^{2} - \frac{2574843704}{25} a - \frac{785560232}{25} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.15732221389775571213925769454806618432 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.471966641693267136417773083644198552960 \)
Global period: $\Omega(E/K)$ \( 69.801133175285460706965586134532881220 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 16 \)  =  \(2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.5341389547018442170115234589052769627 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}2.534138955 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 69.801133 \cdot 0.471967 \cdot 16 } { {4^2 \cdot 13.000000} } \\ & \approx 2.534138955 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a^2+2a+3)\) \(5\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)
\((-a+1)\) \(5\) \(4\) \(I_{2}^{*}\) Additive \(1\) \(2\) \(8\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 625.2-i consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.