Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
98.1-a11
98.1-a
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
98.1
\( 2 \cdot 7^{2} \)
\( 2 \cdot 7^{5} \)
$0.79523$
$(a), (-2a+1), (2a+1)$
0
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
$2, 3$
2B , 3B.1.1
$1$
\( 2^{2} \)
$1$
$17.66572176$
0.693975091
\( \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( -55 a - 91\) , \( 290 a + 416\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}+\left(-55a-91\right){x}+290a+416$
686.1-d11
686.1-d
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
686.1
\( 2 \cdot 7^{3} \)
\( 2 \cdot 7^{11} \)
$1.29349$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B
$4$
\( 2^{2} \)
$1$
$1.488944592$
2.105685636
\( \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} \)
\( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 485 a - 759\) , \( -2705 a + 3591\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(485a-759\right){x}-2705a+3591$
686.2-d11
686.2-d
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
686.2
\( 2 \cdot 7^{3} \)
\( 2 \cdot 7^{11} \)
$1.29349$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B
$1$
\( 2^{2} \)
$1$
$5.955778371$
2.105685636
\( \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} \)
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -134 a - 376\) , \( 1907 a + 2353\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-134a-376\right){x}+1907a+2353$
784.1-a11
784.1-a
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
784.1
\( 2^{4} \cdot 7^{2} \)
\( 2^{13} \cdot 7^{5} \)
$1.33740$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B
$1$
\( 2^{3} \)
$1$
$1.756927026$
1.242335014
\( \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} \)
\( \bigl[a\) , \( -1\) , \( 0\) , \( -220 a - 362\) , \( -2320 a - 3330\bigr] \)
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-220a-362\right){x}-2320a-3330$
4802.1-z11
4802.1-z
$12$
$36$
\(\Q(\sqrt{2}) \)
$2$
$[2, 0]$
4802.1
\( 2 \cdot 7^{4} \)
\( 2 \cdot 7^{17} \)
$2.10397$
$(a), (-2a+1), (2a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B
$1$
\( 2^{4} \)
$1$
$0.501979150$
0.709905722
\( \frac{2928743223192875}{4802} a + \frac{2070934198465000}{2401} \)
\( \bigl[1\) , \( 1\) , \( 0\) , \( -2695 a - 4435\) , \( -102165 a - 147209\bigr] \)
${y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(-2695a-4435\right){x}-102165a-147209$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.