Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
686.2-c2 686.2-c \(\Q(\sqrt{2}) \) \( 2 \cdot 7^{3} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.041738732$ $24.65757654$ 1.455474647 \( \frac{208183}{56} a - \frac{292563}{56} \) \( \bigl[1\) , \( -a\) , \( a + 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}$
686.2-e2 686.2-e \(\Q(\sqrt{2}) \) \( 2 \cdot 7^{3} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $3.139999973$ 2.220315274 \( \frac{208183}{56} a - \frac{292563}{56} \) \( \bigl[a + 1\) , \( a + 1\) , \( 1\) , \( 8 a - 5\) , \( 15 a - 5\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(8a-5\right){x}+15a-5$
4802.1-w2 4802.1-w \(\Q(\sqrt{2}) \) \( 2 \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.138331575$ $0.760281635$ 2.447869585 \( \frac{208183}{56} a - \frac{292563}{56} \) \( \bigl[1\) , \( a + 1\) , \( a\) , \( 33 a - 8\) , \( -148 a - 378\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(33a-8\right){x}-148a-378$
4802.1-bd2 4802.1-bd \(\Q(\sqrt{2}) \) \( 2 \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.048504617$ $5.970287511$ 4.914446106 \( \frac{208183}{56} a - \frac{292563}{56} \) \( \bigl[a + 1\) , \( 0\) , \( a\) , \( 5 a + 3\) , \( -35 a - 47\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(5a+3\right){x}-35a-47$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.