Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
20.1-a4 20.1-a \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.545375530$ 2.059677057 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1322 a - 5120\) , \( -49390 a - 191290\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1322a-5120\right){x}-49390a-191290$
20.1-b4 20.1-b \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 1.335360080 \( \frac{488095744}{125} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -1322 a - 5120\) , \( 49390 a + 191290\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-1322a-5120\right){x}+49390a+191290$
20.1-c4 20.1-c \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.978663800$ $20.68730941$ 2.613737142 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
20.1-d4 20.1-d \(\Q(\sqrt{15}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.784578586$ $3.545375530$ 1.732224375 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.