Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
192.1-a1
192.1-a
$2$
$2$
\(\Q(\sqrt{57}) \)
$2$
$[2, 0]$
192.1
\( 2^{6} \cdot 3 \)
\( - 2^{18} \cdot 3^{7} \)
$2.51132$
$(a-4), (a+3), (4a+13)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{2} \cdot 7 \)
$1$
$2.366795926$
2.194428451
\( -\frac{3312124708}{81} a + \frac{14159196572}{81} \)
\( \bigl[0\) , \( -a\) , \( 0\) , \( 63 a - 257\) , \( 580 a - 2492\bigr] \)
${y}^2={x}^{3}-a{x}^{2}+\left(63a-257\right){x}+580a-2492$
192.1-h1
192.1-h
$2$
$2$
\(\Q(\sqrt{57}) \)
$2$
$[2, 0]$
192.1
\( 2^{6} \cdot 3 \)
\( - 2^{18} \cdot 3^{7} \)
$2.51132$
$(a-4), (a+3), (4a+13)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2$
2B
$1$
\( 2^{3} \)
$0.760854258$
$7.619769145$
3.071608443
\( -\frac{3312124708}{81} a + \frac{14159196572}{81} \)
\( \bigl[0\) , \( -1\) , \( 0\) , \( 75236 a + 246392\) , \( 2819016 a + 9232044\bigr] \)
${y}^2={x}^{3}-{x}^{2}+\left(75236a+246392\right){x}+2819016a+9232044$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.