Base field \(\Q(\sqrt{57}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 14 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(2 a - 7 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((32a+104)\) | = | \((a-4)^{3}\cdot(a+3)^{3}\cdot(4a+13)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 192 \) | = | \(2^{3}\cdot2^{3}\cdot3\) |
| |||||
Discriminant: | $\Delta$ | = | $-6912a+13824$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-6912a+13824)\) | = | \((a-4)^{10}\cdot(a+3)^{8}\cdot(4a+13)^{7}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( -573308928 \) | = | \(-2^{10}\cdot2^{8}\cdot3^{7}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{3312124708}{81} a + \frac{14159196572}{81} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 2.3667959267896866059425082238866255568 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 28 \) = \(2\cdot2\cdot7\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.1944284513218819218774816633485667701 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.194428451 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.366796 \cdot 1 \cdot 28 } { {2^2 \cdot 7.549834} } \\ & \approx 2.194428451 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a-4)\) | \(2\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(3\) | \(10\) | \(0\) |
\((a+3)\) | \(2\) | \(2\) | \(I_{1}^{*}\) | Additive | \(1\) | \(3\) | \(8\) | \(0\) |
\((4a+13)\) | \(3\) | \(7\) | \(I_{7}\) | Split multiplicative | \(-1\) | \(1\) | \(7\) | \(7\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
192.1-a
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.