Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
32.1-d3
32.1-d
$4$
$4$
\(\Q(\sqrt{14}) \)
$2$
$[2, 0]$
32.1
\( 2^{5} \)
\( 2^{6} \)
$1.59045$
$(-a+4)$
$1$
$\Z/2\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2 \)
$1.067060424$
$13.75037163$
1.960692265
\( 287496 \)
\( \bigl[a\) , \( 1\) , \( 0\) , \( -330 a - 1228\) , \( -6788 a - 25395\bigr] \)
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-330a-1228\right){x}-6788a-25395$
32.1-d4
32.1-d
$4$
$4$
\(\Q(\sqrt{14}) \)
$2$
$[2, 0]$
32.1
\( 2^{5} \)
\( 2^{6} \)
$1.59045$
$(-a+4)$
$1$
$\Z/4\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2 \)
$1.067060424$
$55.00148654$
1.960692265
\( 287496 \)
\( \bigl[a\) , \( 1\) , \( a\) , \( -330 a - 1235\) , \( 5798 a + 21694\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-330a-1235\right){x}+5798a+21694$
32.1-e3
32.1-e
$4$
$4$
\(\Q(\sqrt{14}) \)
$2$
$[2, 0]$
32.1
\( 2^{5} \)
\( 2^{6} \)
$1.59045$
$(-a+4)$
$1$
$\Z/2\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2 \)
$1.494440753$
$13.75037163$
2.745991098
\( 287496 \)
\( \bigl[a\) , \( 1\) , \( a\) , \( -3\) , \( -6\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-3{x}-6$
32.1-e4
32.1-e
$4$
$4$
\(\Q(\sqrt{14}) \)
$2$
$[2, 0]$
32.1
\( 2^{5} \)
\( 2^{6} \)
$1.59045$
$(-a+4)$
$1$
$\Z/4\Z$
$\textsf{potential}$
$-16$
$N(\mathrm{U}(1))$
✓
✓
✓
$1$
\( 2 \)
$1.494440753$
$55.00148654$
2.745991098
\( 287496 \)
\( \bigl[a\) , \( 1\) , \( 0\) , \( 4\) , \( 1\bigr] \)
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+4{x}+1$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.