Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
64.1-b3 64.1-b \(\Q(\sqrt{7}) \) \( 2^{6} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.494440753$ $13.75037163$ 1.941708926 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 134 a - 345\) , \( 1298 a - 3425\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(134a-345\right){x}+1298a-3425$
64.1-b4 64.1-b \(\Q(\sqrt{7}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1.494440753$ $55.00148654$ 1.941708926 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 135 a - 341\) , \( -1379 a + 3661\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(135a-341\right){x}-1379a+3661$
256.1-g3 256.1-g \(\Q(\sqrt{7}) \) \( 2^{8} \) $1$ $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1.067060424$ $6.875185818$ 2.772837593 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 528 a - 1397\) , \( 10710 a - 28336\bigr] \) ${y}^2={x}^{3}+\left(528a-1397\right){x}+10710a-28336$
256.1-g4 256.1-g \(\Q(\sqrt{7}) \) \( 2^{8} \) $1$ $\Z/4\Z$ $-16$ $N(\mathrm{U}(1))$ $1.067060424$ $27.50074327$ 2.772837593 \( 287496 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 528 a - 1397\) , \( -10710 a + 28336\bigr] \) ${y}^2={x}^{3}+\left(528a-1397\right){x}-10710a+28336$
576.2-a3 576.2-a \(\Q(\sqrt{7}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $15.87756153$ 1.500288544 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 14 a - 22\) , \( -35 a + 102\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(14a-22\right){x}-35a+102$
576.2-a4 576.2-a \(\Q(\sqrt{7}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $15.87756153$ 1.500288544 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 13 a - 26\) , \( 31 a - 75\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(13a-26\right){x}+31a-75$
576.3-a3 576.3-a \(\Q(\sqrt{7}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $15.87756153$ 1.500288544 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -8 a - 22\) , \( -57 a - 150\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a-22\right){x}-57a-150$
576.3-a4 576.3-a \(\Q(\sqrt{7}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $-16$ $N(\mathrm{U}(1))$ $1$ $15.87756153$ 1.500288544 \( 287496 \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -9 a - 26\) , \( 9 a + 23\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-9a-26\right){x}+9a+23$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.