Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
8.1-a2
8.1-a
$2$
$3$
\(\Q(\sqrt{241}) \)
$2$
$[2, 0]$
8.1
\( 2^{3} \)
\( 2^{14} \)
$2.33303$
$(-393a-2854), (393a-3247)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B
$1$
\( 2 \cdot 3 \)
$1$
$17.50871291$
6.767012065
\( \frac{615}{64} a + \frac{3917}{16} \)
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -2879460343066 a + 23790352869908\) , \( -22072265823414034036 a + 182362988204191549224\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2879460343066a+23790352869908\right){x}-22072265823414034036a+182362988204191549224$
32.4-b2
32.4-b
$2$
$3$
\(\Q(\sqrt{241}) \)
$2$
$[2, 0]$
32.4
\( 2^{5} \)
\( 2^{14} \)
$3.29940$
$(-393a-2854), (393a-3247)$
$1$
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
$3$
3B
$1$
\( 2 \)
$1.106754909$
$12.14356657$
3.462973634
\( \frac{615}{64} a + \frac{3917}{16} \)
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 24 a + 156\) , \( 270 a + 1952\bigr] \)
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(24a+156\right){x}+270a+1952$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.