Generator a, with minimal polynomial
x2−x−60; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-60, -1, 1]))
gp:K = nfinit(Polrev([-60, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-60, -1, 1]);
y2+axy=x3+(−a−1)x2+(−2879460343066a+23790352869908)x−22072265823414034036a+182362988204191549224
sage:E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([23790352869908,-2879460343066]),K([182362988204191549224,-22072265823414034036])])
gp:E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([23790352869908,-2879460343066]),Polrev([182362988204191549224,-22072265823414034036])], K);
magma:E := EllipticCurve([K![0,1],K![-1,-1],K![0,0],K![23790352869908,-2879460343066],K![182362988204191549224,-22072265823414034036]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
trivial
| Conductor: |
N |
= |
(−786a−5708) |
= |
(−393a−2854)2⋅(393a−3247) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
| Conductor norm: |
N(N) |
= |
8 |
= |
22⋅2 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
| Discriminant: |
Δ |
= |
−64a+512 |
|
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−64a+512) |
= |
(−393a−2854)8⋅(393a−3247)6 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
16384 |
= |
28⋅26 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
| j-invariant: |
j |
= |
64615a+163917 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
| Endomorphism ring: |
End(E) |
= |
Z
|
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) |
= |
SU(2) |
| Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
| Mordell-Weil rank: |
r |
= |
0 |
|
Regulator:
|
Reg(E/K) |
= |
1
|
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
| Global period: |
Ω(E/K) | ≈ |
17.508712912343282093537368966918063611 |
| Tamagawa product: |
∏pcp | = |
6
= 1⋅(2⋅3)
|
| Torsion order: |
#E(K)tor | = |
1 |
| Special value: |
L(r)(E/K,1)/r! |
≈ | 6.7670120653414288820198977929875419481 |
|
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
6.767012065≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈12⋅15.5241751⋅17.508713⋅1⋅6≈6.767012065
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 2 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class
8.1-a
consists of curves linked by isogenies of
degree 3.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.