Properties

Label 2.2.241.1-8.1-a2
Base field Q(241)\Q(\sqrt{241})
Conductor norm 8 8
CM no
Base change no
Q-curve no
Torsion order 1 1
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(241)\Q(\sqrt{241})

Generator aa, with minimal polynomial x2x60 x^{2} - x - 60 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-60, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([-60, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-60, -1, 1]);
 

Weierstrass equation

y2+axy=x3+(a1)x2+(2879460343066a+23790352869908)x22072265823414034036a+182362988204191549224{y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2879460343066a+23790352869908\right){x}-22072265823414034036a+182362988204191549224
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,0]),K([23790352869908,-2879460343066]),K([182362988204191549224,-22072265823414034036])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([23790352869908,-2879460343066]),Polrev([182362988204191549224,-22072265823414034036])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![-1,-1],K![0,0],K![23790352869908,-2879460343066],K![182362988204191549224,-22072265823414034036]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: N\frak{N} = (786a5708)(-786a-5708) = (393a2854)2(393a3247)(-393a-2854)^{2}\cdot(393a-3247)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 8 8 = 2222^{2}\cdot2
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 64a+512-64a+512
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (64a+512)(-64a+512) = (393a2854)8(393a3247)6(-393a-2854)^{8}\cdot(393a-3247)^{6}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 16384 16384 = 28262^{8}\cdot2^{6}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 61564a+391716 \frac{615}{64} a + \frac{3917}{16}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 17.508712912343282093537368966918063611 17.508712912343282093537368966918063611
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 6 6  =  1(23)1\cdot( 2 \cdot 3 )
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 6.7670120653414288820198977929875419481 6.7670120653414288820198977929875419481
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

6.767012065L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/2117.508713161215.5241756.767012065\begin{aligned}6.767012065 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 17.508713 \cdot 1 \cdot 6 } { {1^2 \cdot 15.524175} } \\ & \approx 6.767012065 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(393a2854)(-393a-2854) 22 11 IVIV^{*} Additive 1-1 22 88 00
(393a3247)(393a-3247) 22 66 I6I_{6} Split multiplicative 1-1 11 66 66

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 8.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.