Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24.1-a4 24.1-a \(\Q(\sqrt{30}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.158547729$ $9.301119475$ 3.665525556 \( \frac{1556068}{81} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -1070 a - 5854\) , \( -44886 a - 245854\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-1070a-5854\right){x}-44886a-245854$
24.1-b4 24.1-b \(\Q(\sqrt{30}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $2.841664688$ $9.301119475$ 2.412778368 \( \frac{1556068}{81} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -24\) , \( -36\bigr] \) ${y}^2={x}^{3}-{x}^{2}-24{x}-36$
24.1-c4 24.1-c \(\Q(\sqrt{30}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.068541721$ $22.73403407$ 4.435140305 \( \frac{1556068}{81} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 262 a - 1432\) , \( -4084 a + 22370\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(262a-1432\right){x}-4084a+22370$
24.1-d4 24.1-d \(\Q(\sqrt{30}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.665930347$ $22.73403407$ 3.457345033 \( \frac{1556068}{81} \) \( \bigl[a\) , \( -1\) , \( a\) , \( -7\) , \( -5\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}-7{x}-5$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.