Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
2028.1-a8
2028.1-a
$8$
$12$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
2028.1
\( 2^{2} \cdot 3 \cdot 13^{2} \)
\( - 2^{8} \cdot 3^{3} \cdot 13^{5} \)
$2.07729$
$(a+1), (a), (a+4), (a-4)$
0
$\Z/6\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B.1.1
$1$
\( 2^{2} \cdot 3^{2} \)
$1$
$7.575150816$
2.186757681
\( \frac{7050642069267500}{257049} a + \frac{1356896696001000}{28561} \)
\( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 72 a - 171\) , \( -2333 a + 4144\bigr] \)
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(72a-171\right){x}-2333a+4144$
2028.1-h8
2028.1-h
$8$
$12$
\(\Q(\sqrt{3}) \)
$2$
$[2, 0]$
2028.1
\( 2^{2} \cdot 3 \cdot 13^{2} \)
\( - 2^{8} \cdot 3^{3} \cdot 13^{5} \)
$2.07729$
$(a+1), (a), (a+4), (a-4)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2, 3$
2B , 3B.1.2
$1$
\( 2^{2} \)
$5.325757738$
$0.936092452$
2.878322969
\( \frac{7050642069267500}{257049} a + \frac{1356896696001000}{28561} \)
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 74 a - 168\) , \( 2406 a - 4314\bigr] \)
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(74a-168\right){x}+2406a-4314$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.